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We study the propagation of incoherent accessible solitons in strongly nonlocal media with arbitrary re-
sponse function. Based on the linear propagation equation and the mutual coherence function approach, we
obtain an exact analytical solution of such incoherent accessible solitons. The solitons radius is related to the
total power as well as the coherence characteristics of the incoherent beam. We find that there is not a threshold
for incoherent solitons exist in strongly nonlocal media because the model is linear. Evolution behaviors of the
solitons width and the coherence radius are also described when the solitons undergo linear harmonic
oscillation.
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I. INTRODUCTION

In recent years, nonlocal solitons have opened new direc-
tions in nonlinear science, both theoretically �1–14� and ex-
perimentally �15–23�. Snyder and Mitchell represented a
highly nonlocal model for light propagation in nonlinear me-
dia �1�. Under this assumption, they treated solitons collision
and interaction as linear harmonic oscillation �accessible
solitons�. This is a revolutionary pioneering work �24�. Sub-
sequently, nonlocal solitons have been studied extensively
�25�. Exact soliton solution in weakly nonlocal media �3�,
attraction of nonlocal dark solitons �4,23�, and modulation
instability of nonlocal solitons �5,6,18–20� are investigated.
It is also shown that there is a large phase shift of solitons in
strongly nonlocal media �8�, but in this paper the required
normalization of the response function was missed and thus
the conclusion of a strong phase shift is doubtful. The propa-
gation of solitons is also studied in nonlocal nonlinear pho-
tonic lattices �9–11�. Vortex solitons �12,13� or stable rotat-
ing dipole solitons �14� in nonlocal nonlinear media and
discrete propagation of solitons in nematic liquid crystal �21�
are discussed. The first observation of coherent elliptic soli-
tons and vortex-ring solitons in a nonlinear media with an
infinite range of nonlocality was also reported recently �22�.

Nonlocality is a universal phenomenon in many physical
systems, such as plasma physics �26�, atoms in a gas �27�,
Bose-Einstein condensates �28�, and photorefractive materi-
als �29�. Nonlocal nonlinearity may even describe parametric
wave mixing �30�. Nonlocality also exists in nematic liquid
crystal, which is associated with orientation nonlocal nonlin-
earity �31�. It is shown that nematic liquid crystal is a
strongly nonlocal media �32� so that observation of acces-
sible solitons �1� in experiments turns into reality �33�. An-
other interesting property of liquid crystal is a noninstanta-
neous nonlinearity response, which is sufficiently slow to
allow for the formation of nonlocal incoherent solitons. Pec-
canti et al. reported experimentally the first observation of
incoherent solitons in nematic liquid crystal �34,35�, but
these results provide an independent proof of their highly

nonlocal dynamics �33�. Krolikowski analyzed theoretically
the effect of nonlocality on the propagation of partially co-
herent beams and the formation of incoherent solitons �36�.
Makris investigated the properties of incoherent solitons in
nematic liquid crystal by applying the self-consistent multi-
mode theory �37�. Most recently, the propagation properties
of white-light solitons in nonlocal media with a logarithmic
nonlinearity were also investigated systematically �38�.

In this paper, we discuss the self-trapping of incoherent
accessible solitons �simultaneously incoherent and strongly
nonlocal� in strongly nonlocal media with an arbitrary re-
sponse function. Following the mutual coherence function
approach �40�, we obtain an exact solution of such incoher-
ent accessible solitons. We find that the total power and the
coherence characteristics of the incoherent beam decide
jointly the propagation of the solitons. It is also shown that
there is not a nonlinear threshold for incoherent solitons un-
der the strongly nonlocal limit. In strongly nonlocal media,
the equations are linear and thus it could be expected that
there is no nonlinear threshold. This result can also be ob-
tained from the full model �36� �where the degree of nonlo-
cality is arbitrary in the case of logarithmic nonlinearity� by
going to the strongly nonlocal limit. When the total power of
the incident beam is not equal to the critical value, the inco-
herent accessible solitons will undergo linear harmonic oscil-
lation. Corresponding properties are studied in detail by nu-
merical calculation. We believe the results obtained here are
valid for any shape of the response function in the case of a
strongly nonlocal limit.

II. INCOHERENT PROPAGATION MODEL IN STRONGLY
NONLOCAL MEDIA

We consider a two-dimensional partially incoherent opti-
cal beam that propagates in strongly nonlocal media with a
noninstantaneous Kerr nonlinearity. The refractive index of
the media is n2=n0

2+2n0�n�I�, where n0 is the linear part of
the refractive index, and �n�I� is the nonlinear part which is

defined as �n�I�=�R�r�−r�� �I�r�� ,z�dr�� in nonlocal Kerr me-
dia. Here �dr�=�−�

� �−�
� dxdy and R is the normalized symmet-

ric spatial nonlocal response function of the media so that*Email address: shenmingluck@graduate.shu.edu.cn
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�R�r��dr�=1, I is optical intensity. In this case, the nonlinear
propagation equation for the optical beam is governed by

i
�u

�z
+

1

2k
��

2 u +
k

n0
u� R�r� − r�� ��u�r�� ,z��2dr�� = 0, �1�

where u�r� ,z� is the beam amplitude, k=k0n0, k0=2� /� is the

wave number in vacuum, and �� � is the two-dimensional
transverse Laplacian operator. Because in strongly nonlocal
media the nonlocal response function is much wider than the

beam width, the nonlocal response function R�r�−r�� � can be

expanded in Tailor’s series with respect to r�� about r�� =r� to
second order �6–8�, and Eq. �1� turns into

i
�u

�z
+

1

2k
��

2 u +
k

n0
R0P0u −

k

2n0
�P0r2u

−
k

2n0
�u� r�2�u�r�� ,z��2dr�� = 0. �2�

Here P0=���u�r� ,z��2dxdy is the total power of the incoherent
beam and R0= �R�r���r=0 is the maximum of R�r��, �= �−R�2�

��r���r=0�0 �R�2��0��0 for that R0 is a maximum of R�r���.
From Eq. �2� we can find that the term proportional to the
spatial coordinates r is missed. This is because the nonlocal

response function R�r�−r�� � is symmetrical with respect to r
=0 �6–8,41�. In strongly nonlocal media, the width of the
nonlocal response function trends to infinity or relatively the
beam width trends to zero, so the last term of Eq. �2� is
considered to be zero and it has no effect on the width and
the phase of the beam �8�. For simplification, neglect the last
term of Eq. �2�, let u�r� ,z�=	�r� ,z�exp�i�k /n0�R0P0z�, and in-
sert it into Eq. �2�. We obtain the linear model suggested by
Snyder and Mitchell �1,8,39�,

i
�	

�z
+

1

2k
��

2 	 −
k

2n0
�P0r2	 = 0. �3�

In essence, Eq. �3� is still a nonlinear equation; we call it a
linear model just because its mathematical form is linear.

The coherence characteristics of the beam is expressed
with the mutual coherence function B �40�, which is defined

as B�r1
� ,r2

� ,z�= �	�r1
� ,z�	*�r2

� ,z�	, where the angular brackets
denote temporal averaging, and the time-averaged intensity
is I�r� ,z�=B�r� ,r� ,z�. The mutual coherence function satisfies
the following equation:

i
�B

�z
+

1

2k
���1

2 − ��2
2 �B +

k

2n0
�P0�r2

2 − r1
2�B = 0, �4�

where ��j
2 =�2 /�xj

2+�2 /�yj
2, j=1,2. For convenience, we in-

troduce two new spatial coordinates p� and q� ,

p� =
1

2
�r�1 + r�2�,q� = r�1 − r�2. �5�

Under the new spatial coordinates system, Eq. �4� turns into

i
�B

�z
+

1

k
�� p� · �� q�B −

k

n0
�P0p� · q�B = 0. �6�

We look for the solution of Eq. �6� for the mutual coherence
function in Gaussian-Schell form,

B�p� ,q� ,z� = A�z�exp
−
p2

W2�z�
−

q2

Q2�z�
+ ip� · q�
�z�� , �7�

where p2= �p� �2, q2= �q� �2, A�z� and 
�z� denote the amplitude
and the phase of the mutual coherence function, respectively,
and W�z� and Q�z� are the width and effective coherence
radius of the beam with the following relation:

1

Q2�z�
=

1

rc
2�z�

+
1

4W2�z�
, �8�

where rc�z� is the coherence radius of the beam �36�. The
initial conditions �at z=0� are A�0�=A0, W�0�=W0, Q�0�
=Q0, rc�0�=rc0, and 
�z=0�=0. In nonlocal media, the non-
locality can eliminate collapse in all phsical dimensions for
arbitrary shapes of the nonlocal response as long as the re-
sponse function is symmetric and has a positive definite Fou-
rier spectrum �7�, i.e., the incoherent Gaussian-Schell beams
and the mutual coherence functions are effective in studying
the properties of incoherent accessible solitons in strongly
nonlocal media with a Kerr nonlinearity. Inserting Eq. �7�
into Eq. �6�, the real parts of the polynomial yield a differ-
ential equation for parameter 
,

1

k

d


dz
=

1

k2

4

Q2W2 −

2

k2 −
�P0

n0
, �9�

and the imaginary parts of the polynomial yield three differ-
ential equations for parameters A, W, and Q,

dA

dz
= −

2

k
A
 , �10�

dW

dz
=

1

k
W
 , �11�

dQ

dz
=

1

k
Q
 . �12�

From the two Eqs. �11� and �12�, we obtain that

Q�z�/W�z� = Q�0�/W�0� = Q0/W0, �13�

which shows that during the propagation of the beam, the
wider �narrower� the beam width, the larger �smaller� the
coherence radius. From Eqs. �10� and �11�, we obtain A�z�
= �W0 /W�z��2A0. Because the total power of the beam re-
mains invariable during the propagation, we get A�z�
= P0 / ��W2�z�� �1�. Finally, combining Eqs. �9� and �11�, we
obtain the evolution equation of the beam width,

d2W

dz2 −
4

k2

W0
2

W3Q0
2 +

�P0

n0
W = 0. �14�

Assume that the beam at z=0 has �dW /dz�z=0=0. Integrating
Eq. �14� once, we can obtain
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�dW

dz
2

+
4

k2Q0
2� W0

2

W2�z�
− 1 +

�P0

n0
�W2�z� − W0

2� = 0.

�15�

If V�W�= 4
k2Q0

2 �
W0

2

W2�z� −1�+
�P0

n0
�W2�z�−W0

2� denotes the poten-

tial of the soliton, then Eq. �15� depicts a classical Newton
equation describing an effective particle with kinetic energy
�dW /dz�2 moving in the potential V�W�. The asymmetric po-
tential of the incoherent accessible solitons is illustrated in
Fig. 1 with the effective coherence radius Q0=5 �m, n0
=3.0, k=3�107 �the corresponding wavelength in vacuum is
�=0.628 �m�, W0=10 �m, the incident power is P0=5
�10−3 �W� for Fig. 1�a�, and �=2.5�109 for Fig. 1�b�. We
also assume the nonlocal response function of the media is in
the Gaussian form �7�

R�r�� =
1

2��2 exp
−
x2 + y2

2�2 � , �16�

which implies that �=1/2��4, where � is the width of the
response function, which is much larger than the beam width
in strongly nonlocal media. From Fig. 1 we can see that as
nonlocality increases �� increase, � decrease�, both the mini-
mum and the width of the potential will increase synchro-
nously. As incident power increases, the minimum and the
width of the potential will decrease synchronously, which is
quite different from potential versus nonlocality.

III. INCOHERENT SOLITONS IN STRONGLY NONLOCAL
MEDIA

Incoherent accessible solitons can be obtained by

��
�V�W�

�W ��W�z�=W0
=0,

W0
2 =

4n0

k2�P0Q0
2 , �17�

so the critical input power for the incoherent accessible soli-
tons propagation is

Pc =
4n0

k2�W0
2Q0

2 . �18�

It is indicated that the solitons will be stable when the input
power obeys a restricted value that is related to the beam
width, response function of the media, and the coherence
characteristics. From Eqs. �8� and �17�, we find the expres-
sion for the radius of the incoherent accessible solitons,

W0
2 =

2n0

k2�P0rc0
2 +�� 2n0

k2�P0rc0
2 2

+
n0

k2�P0
. �19�

It is straightforward that the total power and the coherence
characteristics of the incoherent beam decide jointly the ra-
dius of the solitons. It is should be noted that from Eq. �14�,
by setting W�z�=W0, we can get the same result as Eqs. �17�
and �19�.

In Fig. 2�a�, we plot the radius of incoherent accessible
solitons versus the incident power for different coherence
radius. It shows that the soliton width will decrease when the
incident power increases for a given coherence radius. When
the coherence radius increases, the soliton width also de-
creases because the incoherent diffraction will be weaker
when the coherence radius is large. In the limit of fully co-
herent, i.e., rc0=�, we obtain the radius of coherent acces-
sible solitons in strongly nonlocal media,

W0
2 =� n0

k2�P0
. �20�

So the critical power of coherent accessible solitons is Pc�
=n0 / �k2�W0

4�. This result correctly reduces to the solution
previously obtained by Snyder and Mitchell �1�. In Fig. 2�b�,
we plot the radius of incoherent accessible solitons versus
the coherence radius for different incident power. The soli-
tons width will decrease when the power and the coherence

FIG. 1. Potential V(W�z�) in a strongly nonlocal nonlinear media
for different values of � and incident power P. When �=2.5�109,
�=283W0, and �=1.26�109, �=335W0, which can satisfy the
condition that the width of the nonlocal response function should be
much larger than the beam width in strongly nonlocal media.
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radius increase. Furthermore, the coherence radius rc0=0 is a
threshold for all values of the incident power. At that point,
no solitons exist at all.

But we know that the coherence radius of a beam equal to
zero is an extremely ideal condition; such beams do not exist
at all. We can conclude that there is not a nonlinear threshold
for incoherent solitons in strongly nonlocal media, which is
quite different from the incoherent solitons discussed previ-
ously �42�. This result can also be obtained from the full
model �36� �where the degree of nonlocality is arbitrary in
the case of logarithmic nonlinearity� by going to the strongly
nonlocal limit. The propagation model is linear in strongly
nonlocal media. Of course, the nonlinear threshold of the
incoherent solitons does not exist.

IV. LINEAR HARMONIC OSCILLATIONS OF
INCOHERENT ACCESSIBLE SOLITONS

When the incident power does not satisfy the expression
of Eq. �18�, the incoherent accessible solitons will undergo

linear harmonic oscillations. Let W�z� /W0=Y�z� and rewrite
Eq. �15� as


dY

dz
�2

=
m�Y2 − 1�� − Y2�

Y2W0
2 , �21�

where m=�P0W0
2 /n0, = Pc / P0�0, and Pc

=4n0 / �k2�W0
2Q0

2�. From Eq. �21�, we get the simple form of
incoherent solitons in strongly nonlocal media,

W2�z� = W0
2�cos2��z� +  sin2��z�� , �22�

where �=�m /W0=��P0 /n0. When =1, W�z�=W0, the in-
coherent accessible solitons maintain their width during the
propagation and the solitons are stable. When �1, the soli-
tons will undergo linear harmonic oscillation �1�.

This is indeed the case, as illustrated in Fig. 3, where we

FIG. 2. Width of incoherent accessible solitons as a function of
the incident power �a� and the coherence radius �b�. The initial
parameters are n0=3.0, k=3�107, and �=2.5�109.

FIG. 3. Linear harmonic oscillations of the solitons width and
the coherence radius when P0� Pc ��1�. The initial parameters
are n0=3.0, k=3�107, W0=10 �m, �=2.5�109 ��=283W0�, Q0

=2.828 �m, which implies that the initial coherence radius rc0

=2.86 �m and the critical power is Pc=6.69�10−3 �W�.
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show the nonstationary propagation of incoherent accessible
solitons in strongly nonlocal media when the critical power
is larger than the incident power ��1�. The soliton width
and the coherence radius will undergo linear harmonic oscil-
lations. Properties are presented in detail.

Figure 3�a� shows that the beam will oscillate periodically
with propagation distance between W0 and somewhat larger
values. The beam width will increase at first and decrease
when it reaches the maximum. The amplitudes and the peri-
ods of the oscillation are larger for lower incident power and
smaller for higher incident power. In Fig. 3�b�, we can see
that the coherence radius will oscillate between the initial
coherence radius rc0 and somewhat larger values. And the
oscillation periods of the coherence radius are the same as
the oscillation periods of the beam width for a special inci-
dent power. As the incident power increases, the oscillation
amplitudes and periods will decrease, which is entirely like
the oscillation behaviors of the beam width.

In Fig. 4, we show the linear harmonic oscillation of the
solitons width and the coherence radius when the incident
power is larger than the critical power �0��1�. The beam
width will oscillate between W0 and somewhat smaller val-
ues. For the coherence radius, it will oscillate between the
initial coherence radius rc0 and somewhat smaller values.
The oscillation periods of beam width and coherence radius
are the same. As the incident power increases, the oscillation
amplitudes increase but the minimum decreases for both the
beam width and the coherence radius. The oscillation periods
of beam width and coherence radius will decrease synchro-
nously. From the above discussion we know that when the
incident power increases, the beam width will decrease for
both 0��1 and �1. As the beam width decreases, the
coherence radius will also decrease synchronously. This re-
sult can also be obtained by Eq. �13�.

We should emphasize that the above discussion is a theo-
retical work in the case of a strongly nonlocal �or extremely
large nonlocality �22�� approximation. We believe that all of
the theoretical predictions can be observed experimentally.
The experiments should use light from a partially coherent
source �43� and the incoherent beam should be launched into
a strongly nonlocal nonlinear medium, e.g., lead glass with
the thermal optical nonlinearity �22� or nematic liquid crystal
�33�.

V. CONCLUSION

In summary, we study the propagation of incoherent ac-
cessible solitons in a strongly nonlocal media with a Kerr
nonlinearity. Earlier works �36� treated the full case, in
which the degree of nonlocality is arbitrary in the case of
logarithmic nonlinearity. By going to the strongly nonlocal
limit, the results obtained here are valid for any shape of the
response function. We obtain an exact solution of such inco-
herent accessible solitons. The total power and the coherence
characteristics decide the propagation of the incoherent
beam. We find that there is not a nonlinear threshold for
incoherent solitons in strongly nonlocal media under the lin-
ear model approximation. In strongly nonlocal media, the
equations are linear and thus it could be expected that there

is no nonlinear threshold. When incident power is not equal
to the critical value, the solitons will undergo linear har-
monic oscillation. We discuss the oscillation behaviors of the
beam width and the coherence radius by numerical calcula-
tion in detail. For future work on solitons in strongly nonlo-
cal media, we envision the interactions of nonlocal solitons
�44�, especially the interactions of nonlocal incoherent soli-
tons.
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